

Course Syllabus

offered by Department of Chemistry with effect from Semester A 2024/25

This form is for the completion by the <u>Course Leader</u>. The information provided on this form is the official record of the course. It will be used for the City University's database, various City University publications (including websites) and documentation for students and others as required.

Please refer to the Explanatory Notes on the various items of information required.

Prepared / Last Updated by:

Name:	Prof. Xuefeng TAN	Academic Unit:	Department of Chemistry
Phone/email:	3442 7822/ xuefetan@cityu.edu.hk	Date:	29 December 2023

City University of Hong Kong Course Syllabus

offered by Department of Chemistry with effect from Semester A 2024/25

Part I Course Overview

Course Title:	Frontiers in Modern Synthetic Chemistry
Course Code:	CHEM6131
Course Duration:	1 semester
Credit Units:	3 credits
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites:	
(Course Code and Title)	Nil
Precursors:	
(Course Code and Title)	Nil
Equivalent Courses:	
(Course Code and Title)	Nil
Exclusive Courses:	
(Course Code and Title)	Nil

Part II **Course Details**

1. Abstract

(A 150-word description about the course)

This course aims to explore the cutting edge of synthetic technologies and methodologies for the synthesis of functional molecules, advanced materials, and pharmaceuticals. Synthetic chemistry is of vital significance in multiple disciplines, such as medicinal chemistry, material science, chemical biology, and many other areas. In this course, different areas of synthetic chemistry, including asymmetric catalysis, electrochemical synthesis, photoredox catalysis, flow chemistry, main group element chemistry, and other relevant technologies will be introduced. Upon completion of this course, students will attain a comprehensive view of advanced synthetic chemistry, which will endow them with the ability to enter different research areas in their future careers.

Course Intended Learning Outcomes (CILOs) 2.

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of *performance.*)

No.	CILOs	Weighting*	Discov	very-en	riched
		(if	curricu	lum rel	lated
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	
			A1	A2	A3
1.	Introduce the asymmetric synthesis based on organic and	10			\checkmark
	organometallic catalytic methods, the catalytic system				
	design, mechanism studies as well as their applications in				
	pharmaceutical synthesis.				
2.	Demonstrate the utilization and advantages of advanced	10			
	approaches of molecule synthesis, including photo- and				
	electro-chemical techniques.				
3.	Describe the basic concepts of continuous flow chemistry	10			
	and its application in modern organic synthesis.				
4.	Describe the equipment and technique used in modern	10			
	synthetic chemistry.				
5.	Introduce the synthesis and structure of reactive	10			
	main-group compounds.				
6.	Describe the application of main-group compounds in	10			\checkmark
	small-molecule activation, catalysis, and organic synthesis.				
7.	Show the ability to search references, identify scientific	40			
	problems, propose solutions, and give presentations in				
	class.				
* If we	righting is assigned to CILOs, they should add up to 100%.	100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3.

Teaching and Learning Activities (TLAs) (*TLAs designed to facilitate students' achievement of the CILOs.*)

TLA	CILO No.							Hours/week (if	
		1	2	3	4	5	6	7	applicable)
Lectures	Students will be introduced to the importance of chirality, the designing principle of asymmetric catalysis, advanced photo-/electrochemical synthetic technologies, mechanistic understanding, and practical applications in industrial production.	V	V						
Lectures	Students will be introduced to the fundamental principles of continuous flow chemistry, working principles of flow equipment, recent examples of continuous flow synthesis, and the development of continuous flow systems.			V	1				
Lectures	Teaching and learning will be based on a combination of lectures and tutorials to explain the synthesis, structure, and reactivity of main-group compounds.					V	V		
Quizzes	Quizzes will be included in each lecture class to reinforce the understanding of learning contents and set it as one of the assessments of students' competence.	V	V	V	V	V	V		
Assignments	Assignments will be arranged to consolidate the classroom learning and in-depth understanding of related knowledge, including asymmetric organic catalysts, organometallic catalysts, mechanism of chiral induction, mechanism of photo- and electrochemical processes, principles of continuous flow chemistry, the main group chemistry.	V	~	V	V	V	V		
Presentation	A presentation of relevant synthetic topics will be conducted to enhance students' self-learning ability, expression skills, literature-searching ability, and teamwork spirit.							V	

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CIL	CILO No.				Weighting*	Remarks		
	1	2	3	4	5	6	7		
Continuous Assessment: 100%									
In-class tutorials and quizzes	\checkmark							30%	
Tutorials and quizzes will be									
arranged in each lecture class to									
test the learning quality.									
Out-class assignments								30%	
One assignment on asymmetric									
catalysis, photochemistry, and									
electrochemical synthesis; one									
assignment on continuous flow									
technology; one assignment on									
main group chemistry.									
Presentation								40%	2 assessors
A selected topic, either given by									will be
teachers or chosen by students									arranged to
themselves, related to advanced									give an
synthetic technology will be									objective and
assigned to individuals or									comprehensive
groups for presentation.									evaluation.
Examination: <u>0</u> %									
* The weightings should add up to 10)0%.							100%	

Starting from Semester A, 2015-16, students must satisfy the following minimum passing requirement for CHEM courses:

"A minimum of 40% in both coursework and examination components."

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Quizzes	The extent of mastery of class			Basic ability to analyze	Not even reaching
	learning outcome, ability to	high ability to analyze	problem-solving skills.	and solve problems.	marginal levels.
	solve practice problems,	-			
	including the design of	problems.			
	synthetic routes for target				
	molecules, reaction				
	mechanisms, flow system				
	design, structure, and				
	reactivity of main group				
	chemistry.	Trate at 11 to a set		Desire all'iller de selare	Not see a line
2. Assignments	Ability to periodically summarize and recall the	High ability and	Good ability to solve	•	Not even reaching
	in-class learning knowledge;	excellent performance in solving practice	practice problems.	practice problems.	marginal levels.
	the depth and width of	problems.			
	understanding and memory of	problems.			
	various synthetic methods and				
	technologies; ability to apply				
	in-class learning concepts for				
	rationalization and to solve				
	chemical problems.				
3. Presentation	Ability to search reference,	Very fluent expression	Good expression,	Basic complement.	Not even reaching
	extract, and summarize	and articulate, audience	critical problems, and	*	marginal levels.
	scientific ideas; capability of	been well convinced.	ideas are well-received		-
	self-learning and analysis of		by the audience.		
	critical problems; skills of				
	expression and convincing				
	others.				

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Synthetic Chemistry Material science. Physical science. Medicinal chemistry.

Asymmetric Synthesis

Chirality. Asymmetric catalysis. Organic catalyst. Organometallic catalyst. Chiral pharmaceuticals.

Photo-/Electrochemical Synthesis Sustainable chemistry. Photoredox reaction. Electrochemical oxidation. Electrochemical reduction.

Continuous Flow Chemistry

Working principles of flow equipment. Establishment of continuous flow system. Advantages of continuous flow chemistry.

Main Group Chemistry Small molecular activation. Metal-free catalysis. Main-group compounds.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B., Asymmetric Enamine Catalysis. Chem. Rev.
	2007 , <i>107</i> , 5471-5569.
2.	Yan, M.; Kawamata, Y.; Baran, P. S., Synthetic Organic Electrochemical Methods Since 2000:
	On the Verge of a Renaissance. Chem. Rev. 2017, 117, 13230-13319.
3.	Chan, A. Y.; MacMillan, D. W. C., et.al. Metallaphotoredox: The Merger of Photoredox and
	Transition Metal Catalysis. Chem. Rev. 2022, 122, 1485-1542.
4.	Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H., The Hitchhiker's Guide to Flow
	Chemistry. Chem. Rev. 2017, 117, 11796-11893.
5.	Stephan, D. W.; Erker, G., Frustrated Lewis Pair Chemistry: Development and Perspectives.
	Angew. Chem. Int. Ed. 2015, 54, 6400-6441.

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	
2.	
3.	